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The interaction of electromagnetic radiation with temporally dispersive magnetic solids of small dimensions
may show very special resonant behaviors. The internal fields of such samples are characterized by
magnetostatic-potential scalar wave functions. The oscillating modes have the energy orthogonality properties
and unusual pseudoelectric �gauge� fields. Because of a phase factor, that makes the states single valued, a
persistent magnetic current exists. This leads to appearance of an eigenelectric moment of a small disk sample.
One of the intriguing features of the mode fields is dynamical symmetry breaking.
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I. INTRODUCTION

For a localized region with a finite-space domain of

charge distribution, standard equations of electrostatics, ��

�E� �r��=0;�� ·D� �r��=4���r��, may lead to the appearance of
so-called self-induced electrostatic fields �1�. Such fields take
place when charge distributions are functions of the electro-
static potential. The basic equations for the electrostatic po-
tential are ���r��=0 outside a domain of charge distribution
and ����r��=−4�����r��� inside a domain of charge distribu-
tion. Electrostatic fields generated by sources � such that
����r��=0�=0 are called as the self-induced electrostatic
fields. In linear approximation �with respect to �, not with
respect to r�� the charge density for self-induced fields are of
the form ��r��=��r����r��, where ��r�� is some structure func-
tion specific to the particular distribution of charge in space.
For a certain case, the basic equation of electrostatics of
self-induced fields takes the form of the Schrödinger-type
equation �stationary state� with the quantized permittivities
corresponding to discrete potential-eigenfunction states �1�.

The self-induced electric fields in small samples consid-
ered by Kapuścik �1� are pure static fields. Recently, the
reader’s attention was called to the paper by Fredkin and
Mayergoyz �2�, which addresses the nature of the electro-
static resonance behavior in small �compared to the free-
space electromagnetic-wave wavelength� dielectric objects.
These resonances take place for negative quantities of the
temporally dispersive permittivity: ��	�
0. For resonance
quasielectrostatic modes, there are resonance values of per-
mittivity �. For the case considered by Fredkin and Mayer-
goyz, quasielectrostatic fields are the fields with localized
sources induced by the electrostatic potential. In the sense
perceived by Kapuścik, these are, in fact, the self-induced
quasielectrostatic fields.

It is well known that in a general case of small �compared
to the free-space electromagnetic-wave wavelength� samples
made of media with strong temporal dispersion, the role of
displacement currents in Maxwell equations can be negligi-
bly small, so oscillating fields are the quasistationary fields
�3�. For the case considered by Fredkin and Mayergoyz, one
neglects a magnetic displacement current and has quasista-
tionary electric fields. A dual situation �with respect to
quasielectrostatic resonances� is demonstrated for quasista-

tionary magnetic fields in small samples with strong tempo-
ral dispersion of the permeability tensor: �J=�J�	�. In such
small samples, variation of the electric energy is negligibly
small compared to variation of the magnetic energy and so
one can neglect the electric displacement current in Maxwell
equations �3�. These magnetic samples can exhibit the mag-
netostatic resonance behavior in microwaves �4–7�. For reso-
nance modes, there are resonance values of permeability �.
So one may call these modes the self-induced quasimagne-
tostatic fields.

When one neglects the displacement currents, one can
introduce a notion of a scalar potential: electrostatic potential
� for quasielectrostatic fields and magnetostatic potential �
for quasimagnetostatic fields. These potentials, however, do
not have the same physical meaning as in a situation of pure
electrostatics and magnetostatics. Since there are resonant
behaviors of small dielectric or magnetic objects �confine-
ment phenomena plus temporal-dispersion conditions of ten-
sors �J�	� and/or �J�	��, we have scalar wave functions:
electrostatic-potential wave function ��r� , t� and
magnetostatic-potential wave function ��r� , t�. The main note
is that since we are on the level of the continuum description
of media �based on tensors �J�	� and/or �J�	��, the boundary
conditions should be imposed on the scalar wave functions
��r� , t� and/or ��r� , t� and their derivatives, but not on the rf
functions of polarization �plasmons� and/or magnetization
�magnons�. There are no electron-motion equations in the
continuum ��J- and �J-based� description.

It is clear that the quasistationary �time-variable� electric
field should be accompanied with the rf magnetic field. Simi-
larly, the quasistationary �time-variable� magnetic field
should be accompanied with the rf electric field. Use of the
notion of the scalar wave functions leads, however, to evi-
dent contradictions with the dynamical Maxwell equations
�DMEs�. This fact can be perceived, in particular, from the
remarks made by McDonald �8�. Let us consider a case of
electrostatic resonances in small dielectric �nonconducting�
objects. We introduce electrostatic potential ��r� , t� when we

neglect the magnetic displacement current: �B� /�t=0� . From

the Maxwell equation �the Ampere-Maxwell law�, �� �H�

= �1/c���D� /�t�, one can write
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�� �
�H�

�t
=

1

c

�2D�

�t2 . �1�

If a sample does not possess any magnetic anisotropy, we
have

�2D�

�t2 = 0. �2�

Similarly, for magnetostatic resonances in small magnetic
objects one neglects the electric displacement current:

�D� /�t=0. From Maxwell equation �the Faraday law�, ��

�E� =−�1/c���B� /�t�, one obtains

�� �
�E�

�t
= −

1

c

�2B�

�t2 . �3�

If a sample does not possess any dielectric anisotropy, we
have

�2B�

�t2 = 0. �4�

As it follows from Eqs. �2� and �4�, the electric field in small
resonant dielectric objects as well as the magnetic field in
small resonant magnetic objects vary linearly with time. This
leads, however, to arbitrary large fields at early and late
times, and is excluded on physical grounds. An evident con-
clusion suggests itself at once: the electric �for electrostatic
resonances� and magnetic �for magnetostatic resonances�
fields are constant quantities. This contradicts, however, the
fact of temporally dispersive media and any resonant condi-
tions. Another conclusion is more unexpected: for a case of
electrostatic resonances the Ampere-Maxwell law is not
valid and for a case of magnetostatic resonances the Faraday
law is not valid. The purpose of this paper is to demonstrate
that self-induced quasistationary fields of magnetostatic
�MS� resonance modes in small samples are rather the
Schrödinger-like �or even the Dirac-like� fields than the
Maxwell-like fields. MS oscillations in small objects are
characterized by the pseudoelectric �gauge� fields.

II. POWER FLOW DENSITY FOR PROPAGATING
QUASISTATIONARY MAGNETIC MODES

MS ferromagnetism has a character essentially different
from exchange ferromagnetism �9,10�. This statement finds
strong confirmation in confinement phenomena of magnetic-
dipolar oscillations. The dipole interaction provides us with a
long-range mechanism of interaction, where a magnetic me-
dium is considered as a continuum. Contrary to an exchange
spin wave, in magnetic-dipolar waves the local fluctuation of
magnetization does not propagate due to interaction between
the neighboring spins. There should be certain propagating
fields—the MS fields—which cause and govern propagation
of magnetization fluctuations. In other words, space-time
magnetization fluctuations are a corollary of the propagating
MS fields, but there are no magnetization waves. The bound-
ary conditions should be imposed on the MS field and not on

the rf magnetization. This is slightly akin to physics of
propagation of electromagnetic waves in a transmission-line
system. In this case the electromagnetic-wave propagation
causes space-time fluctuations of a conductivity current in
metal parts of a line, but there are no electric-charge-density
waves. So the boundary conditions are imposed on the elec-
tromagnetic field components and not on the rf currents.

When field differences across the sample become compa-
rable to the bulk demagnetizing fields the local-oscillator ap-
proximation is no longer valid, and indeed under certain cir-
cumstances, entirely new spin dynamics behavior can be
observed. This dynamics behavior is the following. Preces-
sion of magnetization about a vector of a bias magnetic field
produces a small oscillating magnetization m� and a resulting

dynamic demagnetizing field H� , which reacts back on the

precession, raising the resonant frequency. Vectors H� and m�
are coupled by the differential relation

�� · H� = − 4� � · m� . �5�

This, together with the Landau-Lifshitz equation, leads to a
complicated integrodifferential equation for the mode solu-
tions. Usually, to calculate these effects the Walker’s �5� dif-
ferential formulation is used and the general solution of this
equation is expressed through a fictitious MS-potential func-

tion � :H� =−��. Such a way of solution is used both for
continuous-wave FMR �11,12� and NMR �13� measure-
ments. The question, however, arises: Is the MS-potential
wave function � really a fictitious function?

The power flow density of MS waves propagating along
the z axis is expressed as

PMS = −
i	

4
���B� �* − ���*B� � · e�z, �6�

where e�z is the unit vector along z axis. This expression can
be obtained in two ways. As it was shown in Ref. �14�, one
derives Eq. �6� from a spectral problem formulation based on
quasistatic operator equations for two wave functions: MS-

potential function � and magnetic flux density B� �B�
=−�J�	����. This operator equation is the following:

L̂V = 0, �7�

where

L̂ = ���J�−1 ��

�� · 0
� �8�

is the differential-matrix operator and

V = �B�

�
� �9�

is the vector function included in the domain of definition of

operator L̂. In this derivation, no DMEs are used.
Another derivation is based on use of DMEs: the power

flow density of MS waves formally corresponds to the Poyn-
ting vector obtained for the curl electric field and the poten-
tial �quasimagnetostatic� magnetic field �12�. This reveals
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�together with McDonald’s remarks �8� shown above� a cer-
tain physical contradiction. The contradiction becomes evi-
dent when one considers the gauge transformation for MS-
wave fields derived from the DMEs. In supposition that there

exists a curl electric field E� defined by the Faraday law, one

can introduce a magnetic vector potential: E� �−�� �A� m. For

monochromatic MS-wave process �B� =−�J�	� ·�� �� and
based on the Faraday law, we have

�2A� m − ���� · A� m� −
i	

c
�J�	� · �� � = 0. �10�

This equation shows that formally two types of gauges are
possible. In the first type of a gauge we have

�� · A� m = 0 �11�

and therefore

�2A� m =
i	

c
�J�	� · �� � . �12�

The second type of a gauge is written as

�� ��� · A� m� +
i	

c
�J�	� · �� � = 0 �13�

and therefore

�2A� m = 0. �14�

The last equation shows that any sources of the electric field
are not defined and thus the electric field is not defined at all.
So only the first type of a gauge, giving Eq. �12�, should be
taken into account.

The main point, however, is that the above considered
gauge transformation does not fall under the known gauge
transformations, neither the Lorentz gauge nor the Coulomb
gauge �15�, and cannot formally lead to the wave equation.
Moreover, to have a wave process one should suppose that
there exists a certain physical mechanism describing the ef-

fect of transformation of the curl �E� =−��A� m� electric field

to the potential �H� =−��� magnetic field. From a classical
electromagnetic point of view, one does not have such a
physical mechanism.

III. GAUGE ELECTRIC FIELDS FOR MAGNETOSTATIC
OSCILLATIONS

MS oscillations in a one-dimensional linear structure are
completely described by the scalar wave function �. In the
case of an MS wave propagating along the z axis in a lossless
structure, one has the Schrödinger-like equation �14,16,17�

a�1��
2��z,t�
�z2 + a�2���z,t� =

���z,t�
�t

, �15�

where a�1� and a�2� are imaginary coefficients. Based on this
equation one can find the normalized average MS energy of
a propagating mode.

The second-order homogeneous differential equation for
the MS-potential wave function, the Walker equation �5�, we
write in a form

Ĝ� = 0, �16�

where

Ĝ � − � · ��J � � �17�

is a second-order differential operator. Let us represent the
MS-potential wave function as a propagating wave in a cer-
tain waveguide structure

� = ̃e−ikz, �18�

where ̃ is the MS-potential membrane function and k is a
propagation constant along the z axis. The eigenvalue equa-
tion for MS mode q in an axially magnetized ferrite rod is
expressed as

�Ĝ� − kq
2�̃q = 0. �19�

For a ferrite region we have

Ĝ� = ���
2 , �20�

where � is a diagonal component of the permeability tensor
and ��

2 is the two-dimensional �with respect to cross-
sectional coordinates� Laplace operator. Outside a ferrite re-
gion Eq. �19� becomes the Laplace equation ��=1�. Double
integration by parts on square S—a cross section of a wave-

guide structure—of the integral �S�Ĝ�̃�̃*dS gives the

boundary conditions for self-adjointness of operator Ĝ�. For
a circular ferrite rod of radius R the boundary condition is

�� �̃

�r
�

r=R−
− � �̃

�r
�

r=R+
= 0 �21�

or

��Hr�r=R− − �Hr�r=R+ = 0. �22�

MS-potential functions ̃ included in the domain of defi-

nition of operator Ĝ� are functions with finite energy. The
boundary conditions �21� are called the essential boundary
conditions �EBCs�. In accordance with the Ritz method it is
sufficient to use basic functions from the energetic functional
space with application of the essential boundary conditions
�18�. For a constant bias magnetic field, the energy eigen-
value problem for MS waves in a ferrite disk resonator is
formulated as the problem defined by the differential equa-
tion:

F̂�̃q = Eq̃q �23�

together with the corresponding �essential� boundary condi-
tions �14,16,17�. A two-dimensional �“in-plane”� differential

operator F̂� and energy Eq are determined as

F̂� =
1

2
g���

2 , �24�
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Eq =
1

2
gkq

2, �25�

where g is the unit dimensional coefficient. The energy or-
thonormality in a ferrite disk described as

�Eq − Eq��	
S

̃q̃q�
* dS = 0 �26�

acquires now a real physical meaning. There is the Hilbert
functional space of MS-potential functions ̃. Because of dis-
crete energy eigenstates of MS-wave oscillations resulting
from structural confinement in the case of a normally mag-
netized ferrite disk, one can consider the oscillating system
as a collective motion of quasiparticles—the light magnons
�16,17�. The energy eigenvalue problem formulated based on
the EBCs shows that a ferrite disk with magnetic-dipolar-
mode oscillations is a Hamiltonian system.

The above considered spectral problem bears, however, a
formal character. The essential boundary conditions differ
from the physical situation demanding continuity for normal

components of B� as the boundary conditions. The last ones
�called natural boundary conditions �NBCs� �18�� are neces-
sarily satisfied by the boundary conditions of functions
V—the functions included in the domain of definition of op-

erator L̂—but not by functions with finite energy. Evidently,

the equation �� ·B� =0 is satisfied for the NBCs, but not for the
EBCs.

For the NBC problem described by Eqs. �7�, we represent
the function V for propagating waves as

V = Ṽe−i�z, �27�

where the tilde means MS-wave membrane functions:

Ṽ = �B�̃

�̃
� ,

� is a propagation constant along the z axis. The eigenvalue
equation for the MS mode m is expressed as

�L̂� − i�mR̂�Ṽm = 0, �28�

where

R̂ � � 0 e�z

− e�z 0
� , �29�

the subscript � means differentiation over a waveguide cross
section. Integration by parts on S—a square of an open MS-

wave waveguide—of the integral �S�L̂�Ṽ�Ṽ*dS gives the

contour integral in a form 
C�B̃r�̃
*− B̃r

*�̃�dC, where C is a
contour surrounding a cylindrical ferrite core and Br is a
component of a membrane function of the magnetic flux den-

sity normal to contour C. Operator L̂� becomes self-adjoint
for homogeneous boundary conditions �continuity of �̃ and

B̃r� on contour C. Based on the homogeneous boundary con-
ditions one obtains the orthogonality relation

��m − �n�	
S

�R̂Ṽm��Ṽn�*dS = 0. �30�

Formulation of the NBC spectral problem is based on the
homogeneous boundary conditions for the radial component

of B� which is described as

��Hr�r=R− − �Hr�r=R+ = − i�a�H��r=R−. �31�

Here Hr and H� are, respectively, radial and azimuth compo-
nents of the rf magnetic field and �a is the off-diagonal com-
ponent of tensor �J. For magnetostatic solutions Hr
=−�� /�r and H�= �1/r���� /���. Because of the cylindrical
symmetry of a sample, the membrane function �̃ is written as
�̃= �̃�r��̃���. With a formal supposition that an angular part
is described as �̃���=e−i��, one rewrites Eq. �31� as

�� ��̃

�r
�

r=R−
− � ��̃

�r
�

r=R+
= −

�a

R
���̃�r=R−. �32�

From this formal representation, it becomes evident that
for a given sign of �a, the solutions for MS-wave functions
depend on the sign of �. For an axially magnetized ferrite rod
this fact was shown by Joseph and Schlömann �19�. So be-
cause of the boundary conditions we have different functions
�̃ for positive and negative directions of an angle coordinate
when 0���2�. It means that functions �̃ cannot be con-
sidered as the single-valued functions.

The fact that solution of the boundary problem is depen-
dent on the sign of � raises a question about the validity of
the energy orthogonality relation for MS-wave modes. For a
system for which a total Hamiltonian is conserved, there
should be single valuedness for eigenfunctions �20�. Since
the eigenstates of Eq. �28� are not single valued, one should
find a phase factor that will make the states single valued.

Following a standard way of solving boundary problems
in mathematical physics �18,21�, let us consider two joint
boundary problems: the main boundary problem and the con-
jugate boundary problem. The problems are described by
differential equations which are similar to Eq. �28�. The main
problem is expressed by a differential equation:

�L̂� − i�R̂�Ṽ = 0. �33�

The conjugate problem is expressed by an equation

�L̂�
� − i��R̂�Ṽ� = 0. �34�

From a formal point of view, it is supposed initially that
these are different equations: there are different differential
operators, different eigenfunctions, and different eigenval-

ues. A form of differential operator L̂�
� one gets from inte-

gration by parts:

	
S

�L̂�Ṽ��Ṽ��*dS = 	
S

Ṽ�L̂�
� Ṽ��*dS + �

C

P�Ṽ,Ṽ��dC ,

�35�

where P�Ṽ , Ṽ�� is a bilinear form. For an open ferrite struc-
ture �a core ferrite region �F� is surrounded by a dielectric
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region �D�� the homogeneous boundary conditions for func-

tions Ṽ and Ṽ� give

�
C

�P�F��Ṽ,Ṽ�� + P�D��Ṽ,Ṽ���dC = 0. �36�

In this case the operator L̂� is a self-conjugate operator. For
self-conjugate operators, the orthogonality relations can be

derived. When one considers functions Ṽ and Ṽ� as the fields
of modes m and n, one obtains the orthogonality relation
�30�.

We demand continuity of �̃ and B̃r on the border C. So
the boundary condition �36� we should write as

�
C

���B̃r�r=R− − �B̃r�r=R+���̃��r=R
* − ��̃�r=R��B̃r

��r=R−

− �B̃r
��r=R+�*dC = 0. �37�

We now uncover the expression for magnetic flux density B�

in Eq. �37�. Since in a ferrite region B̃r=����̃ /�r�
+ i�a���̃ /��� and in a dielectric B̃r= ���̃ /�r�, one has

�
C
��� ��̃

�r
�

r=R−
− � ��̃

�r
�

r=R+
���̃��r=R

*

− ��̃�r=R��� ��̃�

�r
�

r=R−
− � ��̃�

�r
�

r=R+
�*

dC

+ �
C
��i�a

��̃

��
���̃��* − ��̃��i�a

��̃�

��
�*�

r=R

dC = 0.

�38�

In the above equation we represented a contour integral �37�
as a sum of two contour integrals.

For the case of the single-valuedness, the first integral in
Eq. �38� should be equal to zero �see Eq. �21��. Since, how-
ever, functions �̃ are not single-valued functions, the first
integral in Eq. �38� is not equal to zero.

Let us introduce a new membrane function �̃:

�̃��,�� = ��+�̃+

�−�̃−

, �39�

where

�± = a±e−iq±�. �40�

The function �̃ changes a sign when � is rotated by 2�.
Therefore in order to cancel this sign change, �± must
change its sign to preserve the single-valued nature of �̃.
From this we conclude that e−iq±2�=−1. That is

q± = l
1

2
, �41�

where l= ±1, ±3, ±5, . . ..
Now we rewrite Eq. �39� as follows:

�̃± =
1

�±
�̃ = ���̃ , �42�

where

�� =
1

a±
e−iq�� � f�e−iq��. �43�

In the above relations, evidently, a+=−a− and f+=−f−. To
have proper normalization we will take �a± � = �f� � =1.

We substitute expression �42� into Eq. �38�. Since the
boundary conditions for single-valued functions �̃ should
correspond to the boundary conditions �21�, the first integral
in Eq. �38� becomes equal to zero. With use of substitution
�42� we have from Eq. �38�

�
C
��i

�����̃�
��

����
� �̃��* − ����̃��i

����
� �̃��

��
�*�

r=R

dC = 0.

�44�

This gives

	
0

2� �������
� �*���i

��̃

��
���̃��* − ��̃��i

��̃�

��
�*��

r=R

d�

+ 	
0

2� ���̃��̃��*���i
���

��
����

� �* − ����

��i
���

�

��
�*��

r=R

d� = 0. �45�

Both functions, �� and �, describe a periodic process
with respect to angle �. Let us introduce a generalized peri-
odic function y and consider the eigenvalue equation

i
�

��
y = uy , �46�

where u is a real quantity. We introduce now a problem with
the eigenvalue equation conjugate to Eq. �46� �with eigen-
function y� and eigenvalue u�� and consider an integral

	
0

2� �i
�y

��
��y��*d� .

Using integration by parts of this integral, one finds that
when u �and u�� are integer numbers �including 0�: u
=0, ±1, ±2, ±3, . . . and when u �and u�� are half integer
numbers: u= ± 1

2 , ± 3
2 , ± 5

2 , . . ., just only in these two separate

cases operator Ĵz� i�� /��� is a self-conjugate operator and
one can write the orthogonality relation:

�u − u��	
0

2�

y�y��*d� = 0. �47�

For any mixed situation �when, for example, u is an integer
number and u� is a half integer number�, functions y and y�

are not mutually orthogonal. It means that the spectral prob-
lems for integer eigenvalues u should be considered sepa-
rately from the spectral problem for half integer eigenvalues
u. Based on this consideration of the orthogonality relation
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for generalized functions y, one should conclude that
�����

� �*=1 in the first integral of Eq. �45�, while �̃��̃��*=1
in the second integral of Eq. �45�.

The first integral in Eq. �45� is evidently equal to zero. So,
as a result, one has from Eq. �45�

	
0

2� ���i
���

��
����

� �* − �����i
���

�

��
�*��

r=R

d� = 0.

�48�

The transformation �39� restores the single valuedness, but
now there is a nonzero vector-potential-type term:

A�
m � 	

0

2� ��i
���

��
����

� �*�
r=R

d� = q�. �49�

Since q�= �
1
2 , �

3
2 , �

5
2 , . . ., there are the positive and

negative vector-potential-type terms. The superscript “m”
means that there is the magnetic vector-potential-type term.

Function �̃ is identical to function ̃. The confinement
effect for magnetic-dipolar oscillations requires proper phase
relationships to guarantee single-valuedness of the wave
functions. To compensate for sign ambiguities and thus to
make wave functions single valued we added a vector-
potential-type term to the MS-potential Hamiltonian. This
procedure is similar to the procedure made by Mead for the
Born-Oppenheimer wave functions �22,23�. The correspond-

ing flux of pseudoelectric field �� �the gauge field� through a
circle of radius R is obtained analogously to �22�

	
S

�� · dS� = �
C

A� �
m · dC� = �e, �50�

where �e is the flux of pseudoelectric field. The energy lev-
els are periodic in the electric flux �e. There should be the
positive and negative fluxes. These different-sign fluxes
should be inequivalent to avoid the cancellation.

Similar to electromagnetic theory, the vector potential A� �
m

is defined up to a gauge transformation. By performing the
formal transformation

�̃� = �̃eip���, �51�

it is easy to show that

�A�
m�� = A� �

m + ��p��� . �52�

Despite the fact that 
CA� �
m ·dC� �0, one has �� �A� �

m=0� . So

the gauge electric field �� is not related to the Faraday-law

electric field E� .

IV. PERSISTENT MAGNETIC CURRENTS IN MAGNETIC-
OSCILLATION DISKS

The value 
CA� �
m ·dC� �0 can be observable. The above

analysis of a phase factor that makes the states single valued
and so makes a total Hamiltonian to be conserved is related
to a topological effect in a closed system. In this case the
results are gauge invariant and the Stokes theorem can be
used.

In such a closed system, there should be a certain internal

mechanism which creates a nonzero vector potential A� �
m. This

internal mechanism becomes evident when one compares the
EBC �providing single-valuedness� described by Eq. �21�
and the NBC �not providing single-valuedness� described by
Eq. �31�. The difference arises from the term in the right-
hand side, which contains the gyrotropy parameter �the off-
diagonal component of the permeability tensor �a� and the

annular magnetic field H� �. Just due to this term a nonzero

vector potential appears. The annual magnetic field H� � is a
singular field existing only in an infinitesimally narrow cy-
lindrical layer abutting �from a ferrite side� to a border of a
ferrite disk. One does not have any special conditions con-
necting radial and azimuth components of magnetic fields on
other �inner or outer� circular contours, except contour C.
Because of such an annual magnetic field, the notion of an
effective circular magnetic current can be considered.

Let us formally introduce a quantity of a magnetic cur-
rent:

j�m�z� �
1

4�
i	�aH� ��z� . �53�

We can rewrite the boundary condition �31� as follows:

��r − R�� 1

4�
	��Hr�r=R− −

1

4�
	�Hr�r=R+� = − im,

�54�

where im is a density of an effective boundary magnetic cur-
rent defined as

i�m�z� � ��r − R�
1

4�
i	�a�H� ��z��r=R− = ��r − R�j�m�z� .

�55�

In supposition that membrane �“flat”� functions ̃ form a
complete basis in the energy functional space with use of
boundary condition �21�, it becomes evident that the effec-
tive boundary magnetic current slips from the main proper-
ties of this functional space. This current, being a persistent
magnetic current, cannot be considered as a single-valued
function.

A singular “border” MS-potential function �� is described
by Eq. �43�. For a certain MS oscillating mode in a ferrite
disk we can represent an annual magnetic field as

�H��z��r=R− = − ��z����� = − ��z�
1

R
� ���

��
�

r=R−
, �56�

where function ��z� describes the z distribution of the MS
potential in a ferrite disk �14�. For a circular effective bound-
ary magnetic current we have now

�im�z�� = − ��z�
i	�a

4�R
� ���

��
�

r=R−
= − ��z�

	�aq�f�

4�R
e−iq��.

�57�

The border MS-potential functions ��, being character-
ized by the “spin coordinates,” are antisymmetrical func-
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tions. At the same time, as it follows from Eq. �57�, the
effective magnetic currents are described by symmetrical
functions with respect to the spin coordinates. In other
words, the effective magnetic current has the same direction
for the “right” and “left” spinning states. The signs of mag-
netic current im are different for different signs of �a. How-
ever, the “positive” ��a�0� and “negative” ��a
0� mag-
netic currents do not mutually compensate each other since
for different signs of �a we have structures with different
symmetries. This will be clear from further consideration.

Circulation of current im along contour C gives a nonzero
quantity when q� is a number divisible by 1

2 :

D�z� = �
C

�im�dC = R	
0

2�

�im�d� = i��z�
	�a

2�
f�. �58�

The fields existing inside a ferrite disk form a very special
field structure outside a disk. For nonzero circulation D�z�
one can formally define an electric moment of a whole ferrite
disk resonator �in a region far away from a disk� as follows
�24�:

ae = − i
1

2c
	

0

h

dz�
C

��� � i�m� · e�zdC =
	�a

4�c
Rf�	

0

h

��z�dz ,

�59�

where h is a disk thickness.
In the above consideration, transport around a closed path

�which gives Berry’s phase factor �� is the excursion of the
system in time. The circular motion described by border MS-
potential functions �� is the time-reversal-odd process. Also
�a is the time-reversal-odd function and therefore an electric
moment ae should be the time-reversal-even function. At the

same time, since the magnetic current i�m is an axial vector, it

follows that vector �� � i�m is a polar vector. So an electric
moment a�e is the parity-odd time-reversal-even function.

V. SYMMETRY PROPERTIES OF OSCILLATING
MAGNETIC MODES

Self-induced quasistationary magnetic fields are charac-
terized by dynamical symmetry breaking. Let us introduce
the quantity Q��af�. One can distinguish the case when
Q�0 and the case when Q
0. This discriminates, in fact,
two situations: �a� directions of a circular transport and mag-

netic current i�m are the same and �b� directions of a circular

transport and magnetic current i�m are opposite.
The energy eigenstate �see Eq. �25�� is determined by two

waves propagating in a ferrite disk: the forward and back-
ward waves with respect to axis z �17�. Since in a normally
magnetized disk the forward and backward waves propagate
along opposite directions of a bias magnetic field, they are
the time-reversal-odd waves. These waves are characterized
by different signs of �a �11�. The circular motion described
by border MS-potential functions is the time-reversal-odd

process as well. Evidently, for a given energy eigenstate
there should be the same sign of Q �and therefore the same
direction an electric moment a�e� for the forward and back-
ward waves. At the same time, the direction of the “spinning
rotation” with respect to the direction of a polar vector a�e is
different for the forward and backward waves. So one has
different symmetry properties of the forward and backward
waves. To a certain extent, this resembles the “particle-
antiparticle” symmetry properties in elementary particle
physics. The above analysis gives an evidence for four types
of oscillating modes: two different-symmetry �forward and
backward� modes for Q�0 and two different-symmetry �for-
ward and backward� modes for Q
0.

As it follows from the theoretical analysis �14,16,17� and
experimental studies �6,7,25�, the energy levels of oscillating
modes in a normally magnetized ferrite disk are distin-
guished by discrete quantities of a bias magnetic field H0.
For zero magnetic field H0, the modes with Q�0 and Q

0 are degenerate with respect to the energy. When a bias
magnetic field is applied, different orientations of an electric

moment a�e �parallel or antiparallel with respect to H� 0� corre-
spond to different energy levels. So one may have the energy

splitting between two cases: a�e ·H� 0�0 and a�e ·H� 0
0. Such
energy splittings �which we can characterize as the magne-
toelectric energy splittings� were experimentally observed in
Ref. �25�, when a normally magnetized ferrite disk was
placed in a maximum electric component of a cavity field.

VI. CONCLUSION

The problem of the self-induced quasielectrostatic and
quasimagnetostatic fields is especially important in under-
standing mechanisms of interaction of small temporally dis-
persive material samples with electromagnetic radiation. In
particular, electrostatic resonances of isolated nanoparticles
have recently attracted substantial interest because of intrigu-
ing possibility of obtaining very strong and localized electric
fields. However, when the theory predicts multiresonance
electrostatic �plasmon� oscillations in small temporally dis-
persive permittivity samples �2,26,27�, experiments of the
electromagnetic response �28� show, in fact, only a very few
absorption peaks. Contrarily, in a case of small temporally
dispersive permeability disks one can find �both from the
theory �14,16,17� and experiments �6,7,25�� the pictures of
multiresonance magnetostatic oscillations. The present paper
gives further explanation of these phenomena. Our main
standpoint is that, unlike the known results of the self-
induced quasielectrostatic fields, the self-induced quasimag-
netostatic fields in small magnetic samples are the Hilbert-
space modes. Together with interaction with the magnetic
component of the electromagnetic radiation, a small mag-
netic disk interacts with the electric component of the elec-
tromagnetic field. This is because of dynamical symmetry
properties of magnetostatic modes. The dynamical symmetry
breaking in quasistatic magnetic oscillations shows special-
type gauge transformation for the fields.
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